Analyzing mixing equipment using Rocky DEM

Why mixing?

From the powder mixing of pharmaceutical ingredients to fuel particles inside a fluidized bed nuclear reactor; from the mixing of yeast into the dough in a bakery operation to gravel inside an asphalt plant; the search for ways to increase the homogeneity of a system is a common need in many industries.

Mixing is a unit operation that involves the manipulation of a heterogeneous system in order to reduce its non-uniformity or gradients in composition, properties, or temperature. It can also be applied to enhance heat and mass transfer rates, and control reactions and structural changes.

What if mixing fails?

Malfunctioning or poorly designed mixing equipment can significantly raise production costs by increasing the time and/or energy spent on achieving the desired homogeneity.

In the event mixing failure, the whole batch of product may be discarded and a production plant stopped for some time.

Despite a large number of equipment options available in the market, efficient mixing can be difficult on an industrial scale.

In cases with very different sizes or densities, additional complexity arises since gravitational forces tend to segregate particles.

Dealing with organic materials also adds some difficulties regarding material degradation and sanitary issues.

Why Rocky DEM?

Rocky DEM can be used to evaluate the behavior of particles inside mixing devices, helping engineers to design or optimize equipment.

Computational simulations can reduce costs significantly by studying several configurations before actually testing it at the lab and then scaling up from lab to real-scale models.

Rocky simulations are also very useful in assessing equipment efficiency, especially in cases of changing operational conditions, increasing production, or dealing with unanticipated material properties.

High numbers of particles

Previously, one drawback of using DEM to evaluate mixing was an infeasible simulation run time due to the number of particles. However, with advancements in computational power and parallelization of the codes, in most cases, it’s no longer a limitation.

The simulation below shows a very quick and efficient mixing of the product in a plow mixer at 30 RPM and 1.2 million particles.

Details of the mixing near the paddles as well as high mixing and dead zones within the mixer can be visualized, which can aid in optimizing mixer performance and understanding process efficiency. (Learn more about the comprehensive post-processing capabilities included in Rocky DEM by reviewing  this webinar.)

 

Non-spherical particles

In some cases, shape matters, and using spherical particles to mimic real shape behavior is not enough. In this way, Rocky DEM’s ability to run non-spherical particles can help a lot.

The following demo presents the mixing of pecans with peanuts using a kitchen hand mixer.

It shows that the maximum mixing efficiency is reached before 7s. Some segregation can be observed near the bottom which suggests some redesign to improve the device.

 

Adhesion modeling

Particles can be cohesive-forming agglomerates and can also stick to the walls. In these cases, the Rocky DEM adhesion model can be used to model these phenomena.

In the example below, the rotating drum section of asphalt plant equipment was evaluated, where binding material and fine particles are mixed with gravel particles.

Simulations reproduced the general behavior of wet particles inside the equipment, emulating the formation of particle clusters, as well as the adhesion of particles to the walls, assessing the impact of new scraping fins on the residence time and mass retention in this region.

(More information about this particular rotating mixer can be found here.)

 

Heat transfer modeling

Very often, heat transfer accompanies the mixing operation. In these cases, the mixing is critical to ensuring adequate heat and/or mass transfer between particles.

In the following example, Rocky DEM was used to model the heat transfer in a rotary calciner, a very common mixing device in the metallurgical and catalyst industries.

The curved wall is quickly heated up to 1298K, and the evolution of the particles’ temperature is monitored over time, assessing the impact upon different speed drums and the inclusion of lifters. You can find more details about this particular simulation in this post.

DEM-CFD coupling

Rocky-Fluent coupling capabilities enable users to account for the mixing within fluid-solid cases, enlarging the range of processes that can be modeled using DEM.

The video below shows a two-way coupling simulation of a fluidized bed with increasing gas flow rate. The intimate mixing behavior shown is one of the main advantages of using fluidized beds in industrial processes.

 

 


Lucilla Almeida

CAE Specialist at ESSS, D.Sc.

Lucilla holds a BE (Chemical) undergraduate degree, an M.Sc. in Chemical Engineering and a Ph.D. in Nuclear engineering from the Federal University of Rio de Janeiro. She joined ESSS in 2008 and has spent 5 years focused on applying CFD to solve common engineering problems in the Oil and Gas industry, dealing with turbulent and multiphase flow simulations. Since 2013, she is an Application Engineer for Rocky DEM Business Unit, supporting users, working on consultancy projects and validating models implemented for the CFD-DEM coupling.

Leave a comment


Related posts


Get Fresh Updates on Email





We'll never share your email address, and you can opt out at any time, we promise.